JOURNAL OF COMPUTATIONAL PHYSICS 120, 145-155 (1995)

Numerical Solution of the High Frequency Asymptotic Expansion
for the Scalar Wave Equation

E. FaTemL B. ENGQuUIST. AND S. OSHER¥

Department of Mathematics, University of California, 405 Hilgard Avenue, Los Angeles, California 90024-1555

Received April 1, 1993; revised February 6, 1995

New numerical methods are derived for calculation of high fre-
quency asymptotic expansion of the scalar wave equation. The
nonlinear partial differential equations defining the terms in the
expansion are approximated directly rather than via ray tracing.
High resclution numerical algorithms are used to handle discontinu-
ities and new devices are introduced to represent the multivalued
character of the solution, © 1995 Academic Press, Inc.

1. INTRODUCTION

High frequency solutions of different types of the wave equa-
tion arise in many applications including scattering of electro-
magnetic waves, acoustics, ultrasound imaging, and geophysi-
cal imaging, to name only a few. The numerical method that
we shall develop here is for classical high frequency asymptotic
expansions of hyperbolic equations. We shall concentrate here
on the scalar linear wave equation in two spatial variables,

ey = ¢ Au = x, Wy + uy); (N

x and y are the spatial variables, ¢ is time, « is the amplitude
of the wave, and c(x, ) is the speed of the wave in the medium.
Time harmonic solutions of the wave equation, of the form

w(x, y, 1) = €“v(x, y}, (2)

are of special interest. Here w is the time frequency of the wave
as imposed by the boundary conditions. For time harmonic
solutions the wave equation is reduced to the Helmholtz
equation,

2

Av+%v=0. (3)

If we denote the wavelength of the wave by A then the nondi-
mensional quantity k&> = @®/c* = 47/ A? represents the relative

* This research was supperted by ONR Grant NOOO[4-91-J-1034.

size of the wavelength of the wave with respect to the physical
size of the problem. Direct numerical solution of the Helmholtz
equation for large values of parameter k is difficult. The funda-
mental difficulty is the fact that the necessary resolution is
proportional to 1/k. To resolve each wavelength one approxi-
mately needs 10 points. For a three-dimensional calculation
one needs approximately O((10k)*) number of points to resolve
the solution. Values of £ = 100(} are common for many applica-
tions. We follow a different route based on a classical asymp-
totic expansion. .

High frequency solutions of the scalar wave equation can be
approximated by an asymplotic expansion; see, e.g., Luneburg,
Kline, and Keller [10, 6, 5, 8, 1, 2]. In this approach the solution
to the wave equation is expanded as an exponential function
times an infinite series in @', The expansion is substituted in
the wave equation and the sequence of coefficients of @™ are
collected and set to zero. This procedure produces an infinite
system of nonlinear partial differential equations which with
the boundary conditions determine the expansion. The most
important term of the expansion is the exponential term. The
exponent satisfies the eikonal equation of the geometrical optics
for the phase of the wave. The remaining terms represent ampli-
tude and corrections to geomietrical optics from finiteness of
the frequency.

The correspondence between numerical solutions of the wave
equation and the eikonal equation is not straightforward. The
wave equation is a linear equation but the eikonal equation is
a nonlinear equation. We consider a class of solutions of the
eikonal equation known as viscosity solutions [3]. Viscosity
solutions of the eikonal equation are unigue. Any linear combi-
nation of solutions of the wave equation is a solution to the
wave equation, but a linear combination of solutions of the
eikonal equation does not satisfy the eikonal equation. In order
to circumvent this difficulty one has to consider a multivalued
phase function for solutions of the eikonal equation. Other
classes of solutions for the eikonal equation, not present for
the linear equation, are shocks and also expansion waves for
the gradient of the solution. Shocks are observed as two oppos-
ing waves approach each other and the phase becomes multival-
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ued. Expansion waves are observed in the viscosity solution
of the eikonal equation in the regions where geometrical optics
predicts a shadow region. Also the asymptotic expansion that
we are considering does not necessarily include all solutions
of the wave equation. In fact domains with corners or caustics
require different expansions in e [9].

A geometrical theory of diffraction was developed by Keller
in [5]. According to this theory the phase is a multivalued
function connected through branches. Branches could be sur-
faces, lines, or points. The branch manifolds are present due
to either physical boundaries of the problem, the singularities
in the physical boundary, or variation in the index of refraction
or its derivatives. All the above singularities are known a priori
and can be identified for a numerical solution of the problem.
In this paper we identify a new kind of branch surface that can
be determined only when the eikonal solution is solved. Due
to nonuniformity of the index of refraction a singularity could
develop in the phase. This situation happens, for example, when
a plane wave goes through a convex lens. The singularity is
manifested as a discontinuity in the derivative of the phase and
is similar to a shock for conservation laws. We identify the
shock wave as a branch surface and we develop a numerical
method based on shock detection to calculate the branch sur-
face. The information from the branch surface is used to calcu-
late the newly formed phase sheet. Also Keller considers graz-
ing rays produced in the shadow region of a cylinder illuminated
by a plane wave. The grazing rays encircle the cylinder in the
shadow region. The viscosity solution of the eikonal equation
as produced by our numerical procedure is an expansion wave
in the shadow region (see Section 7). The expansion wave
in that region corresponds to the grazing rays as defined by
Keller [5].

The traditional way of solving the eikonal equation is by the
method of characteristics which in this context is called ray
tracing. In this paper we shall explore the application of the
modern high resolution algorithms to directly compute the eiko-
nal equation and the other equations defining the terms in
the expansion. These modern techniques allow for accurate
representation of singularities which is essential in this applica-
tion. Independent of our work similar finite difference methods
have been applied to solve the eikonal equation [4, 15, 16, 17].
We survey these methods in Section 6. A major part of this
paper concerns the approximation of crossing and reflected
rays. The standard viscosity solution of the eikonal equation
is not enough and a hierarchy of numerical solutions has to
be generated. These new functions represent the multivalued
character of the solution and are based on singularity detection.

2. ASYMPTOTIC EXPANSION

It is natural to expand high frequency solutions of the wave
equation around zero wavelength, Here we briefly repeat the
standard derivation of the asymptotic expansion in order to
introduce our notation and to point out important terms. The
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solution to the wave equation is expanded in inverse powers
of @ in the form

ulx, y, 1) = e p (x,y, Hiw) " 4)
n=0

where 1 is a complex solution of the wave equation, &(x, v, 1)
is the phase of the wave, and v, are real functions of time
and space. The amplitude of the wave is |ul* = v} + (W} +
2040307 + O(w™), By substituting the above expansion in the
scalar wave equation and equating the coefficients of different
powers of w, the partial differential equations for the evolution
of ¢, vy, vy, etc, are derived, The second time derivative of u
is simply calculated to be

Uy = eiw‘ﬂ[(q&?vﬁ)(iw)z -+ (qanO + 2¢rU0r + (f):'lvl)(lw)

- (5)

+ z ((f)ﬁunﬂ + 2¢'IUJ':+I,1 + ¢12U!:+2 + Un.!!)(iw)Jr"]-
n=0

Similar expressions for u,, and u,, are obtained by replacing ¢
derivatives by x or y derivatives. Terms of order (iw)* are
collected and the result is the eikonal equation,

dive = APl + . (6)

In general v, is not zero and we take the square root of the
above equation. Here we choose the positive root,

¢ = +clx, Y|V, (M
Terms of order (iw) result in the equation for evolution of vy,
2¢vy, + o = A2 Vd-Vu, + vy Ad). 8)

By collecting terms of order (im)™" we obtain

2 ¢.'Uu+l,! + ¢!1Un+| -+ Urm’.’

(9)
= C2(2 V¢ VU,,+] + Un+1 A¢ + AU").

One can solve for ¢, and v,, and obtain an infinite system for
evolution of the expansion coefficients,

¢, = c|Vd| (10)
_ Ve v(— ¢ + ' Ad)
Ug, = € ol Vo, + 2Vl (1
— E UnH(_d)u + ¢ A¢)
UuH,f =c qubl an+l + 2C}V¢ﬁ|
(12)

(Ul'lﬂﬂ + C2 AUH)

+
2|V
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1t is possible to write the equations for evolution of v, in
conservative form by changing the variables. This reformula-
tion for the steady state equation for v, is standard and here
we extend it for the full time dependent system. Consider the
equation for evolution of v, We multiply both sides by v, and

we obtain
(i), = V- (v V). (13)

Similarly for higher order terms we multiply both sides by v,
and we obtain
(¢1U5+l)t = CZ V N (Uﬁi-l V¢) + UII'H(_'UH.I! + Cl AU,,). (]4)

We define the new variables as w, = ¢pi/c,, and we derive the
transport equations in their conservative form,

& = C‘Vd’l

_ Vo
Mo =V (“"“ IV¢I)

v Una
Wary = V> (CW,;H ﬁ) + Un+1(AUn - Cg' )

wof iy

(15)

(16)

(17)

v,=¢

The above system consists of the eikonal equation for the
phase which is a Hamilton—-Jacobi type equation and an infinite
hyperbolic system for variables w,. The system is essentially
decoupled, since it can be truncated at any level. The first
equation, the eikonal equation, can be solved independently of
the others. Once ¢ is obtained, it is used to solve for wy,
Similarly w, is obtained using the solution of ¢ and w,_,. The
equation for w, has a forcing term (Av, — v,,/c’y which has
to be calculated from the previous term, w,_,. If the previous
term w,_; is not twice differentiable in space and time, the
forcing term is ambiguous. From a numerical point of view,
even for smooth solutions, itis important to calculate the forcing
term correctly, otherwise error would spread out to higher order
terms. The continuity of the phase across branch surfaces sup-
plied us with the necessary boundary conditions for multivalued
solutions of the phase. In general one can substitute the asymp-
totic expansion of the solution in the boundary conditions for
the Helmholtz equation and derive the appropriate boundary
conditions for v,.

3. EIKONAL EQUATION

The first term of the asymptotic expansion is the eikonal
equation for the phase of the wave. The eikonal equation can
also be derived from the vanational problem for light rays.
According to the classical geometrical optics light travels from
point A to point B along rays, (x(s}, y(s)), minimizing the func-
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tional

V'(s)? + y'(s) ds.

J’B 1 (18)
A c(x, y)

The eikenal equation is the Hamilton—Jacobi equation for the
above variational problem. The eikonal equation is a first-order
nonlinear partial differential equation in three dimensional
space and time. In general the solutions of this class of equations
are not classical solutions and admit weak solutions. A large
class of weak and physically relevant solutions for Hamilton—
Jacobi type equations are known as viscosity selutions. In the
context of the geometrical optics the viscosity solution corre-
sponds to the phase of the first ray that arrives at that point
[7]. To recover all solutions it seems that multivalued viscosity
solutions are the appropriate class of solutions. The theory
for viscosity solutions of Hamilton—Jacobi type equations is
developed in [7, 3]. First-order monotone numerical schemes
that produce viscosity solutions were proven to converge by the
same authors. In this work we used the higher order numerical
methods developed in [14].

The concept of light rays can be used to derive the eikonal
equation. It turns out that these rays are nothing but the charac-
teristic lines of the eikonal equation. The characteristic lines can
be defined as the integral curves of the following vector field,

Vo
‘vl

The characteristic lines are used to determine the boundary
conditions for the eikonal equation (also for the transport equa-
tions). Let a unit vector normal to the boundary and pointing
to the outside of the domain be denoted by A. We specify
boundary conditions for ¢ if (Vd/|VPDA is positive. If (Vi
|V is negative no boundary conditions are specified.

The eikonal equation is the central part of the asymptotic
approximation. In this section we describe two specific solu-
tions of the eikonal equation in one-dimensional space. Qur
numerical examples include computation of the same problems,
but in two-dimensional space. First we consider reflection of
a wave from an object and explain how the boundary conditions
and the multivalued nature of the phase is handled. Then we
consider the problem of creation of discontinuities in the gradi-
ent of the solution and how it is used to calculate the multivalued
solution after appearance of the singularity.

The boundary conditions in principle could be derived from
the boundary conditions on the solution of the Helmholtz equa-
tion. For example, to implement the reflecting boundary condi-
tion 4 = 0, we consider the solution to be sum of an incident
and a reflected wave,

oo

oo . —

ulx, y, 1) = u! — uf = godtxd 2 vix, ¥, Diw)™
n={}

) (19)
— gwtflern 2 vi(x, v, iw) ™.
n=0
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1 i
FIG. L.

Reflection of a 1D wave.

Via some simple algebra we arrive at the following boundary
conditions for ¢ and v,:

and vl

¢ = o = vl (20)
To impose the Neumann boundary condition of the form V- A

we assume the solution is of the form

u(x,y, ) =u' + u¥, 20
then the same boundary conditions are obtained,
' = ¢f and ol = vk (22)

We consider a one-dimensional version of reflection of a
plane wave from a plane. The wave is originating from x = 0
and reflecting back from x = 1 (see Fig. 1). The phase of the
incident wave is denoted by ¢, and the phase of the reflected
wave by ¢,. The reflected wave, ¢, satisfies the eikonal equa-
tion and the following appropriate boundary condition (note
that there is no need for a boundary condition at x = I):

¢'I.l = |d)l,x|’ ¢l(03 I) = II{(‘.‘)' (23)

The reflected wave also satisfies the eikonal equation but a
boundary condition at the reflecting surface is needed,

¢)2.1 = |¢2,x|9

(1, 1) = P(1, 1), (24)

The two problems are coupled only at the boundary of the
reflecting surface. The boundary condition simply states the
fact that the phase is continuous on a branch surface (here the
reflecting surface is the branch surface). Note that the problem
is an initial-boundary value problem and the phase has to be
defined at time ¢ = 0. The phase is not defined in the regions
of the space in which there is no wave. Since our boundary
conditions imply a zero phase at time zero, we choose the phase
to be zero everywhere at time = 0. The explicit time dependent
solution of the above problem is

di(x, 1) = (¢ — [xH( — |x[),
Sl =0—|x—1] - DH@E—|x—1] = 1).

(25)
(26)
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The Heaviside function, H(x), is defined as H(x) = 1 for x =
0 and H(x) = O for x < 0.

Next we consider the problem of branch surfaces that are
not known a priori and are calculated as part of the solution,
Consider the eikonal equation in the interval [, 1]. We consider
two plane waves approaching each other. Appropriate boundary
conditions are 0, 1) = tH{¢) and ¢{1, 1) = tH(#). The sclution
up to time t = 0.5 is regular and is explicitly

(e, x) = (¢ — |xDHE = |x]) + (¢ — lx = 1IDHE = |x = 1)). 27)

A singularity is developed in the solution at ¢+ = 0.5 at point
x = 0.5, After time 0.5 the viscosity solution as calculated by
the numerical method is

B(t, x) = max{(r — |xH{t — |x]). 8)

(r—|x = IDH( = |x = 1)}
At point x = 0.5 the derivative of the phase is discontinuous.
The singularity is similar to a shock wave for hyperbolic equa-
tions. The characteristic lines are directed into the singularity.
In fact if we denote the derivative of the phase by u = ¢,, then
u satisfies the nonlinear conservation law u, — |ul, = 0. To
keep track of the lost waves we detect the singularity using the
direction of V¢/|Vei on two sides of the singular point. We
solve a second eikonal equation for the phase of the second
wave. The position of the singularity of ¢, is used as position
of the boundary for ¢ (see Fig. 2). We use the continuity of
the phase at a branch surface to specify the boundary condition,

q‘)Z(S! t) = (i)!(S, t): (29)
where s = 0.5. The solution for ¢, is
do(x, 1) = (¢t — [x — 0.5] — 0.5)H(E — |x — 05| - 0.5). (30)

Figure 3 is a graph of 4 computed solution of a similar problem.
Our graph is a cross section of the two solutions shown in Figs.
6 and 7.

1 1

FIG. 2, Interaction of two waves in 1D.
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FIG. 3. Computed solutions of interacting waves.

4. TRANSPORT EQUATIONS

The eikenal equation describes the behavior of the phase in
the limit of zero wavelength. The amplitude of the wave at that
limit can also be determined using the equation for w,. The
corrections to the amplitude and to the phase due to finiteness
of the wavelength can be determined (formally) by computing
the remaining terms of the expansion. The accuracy of the
approximation is an open question. The partial differential equa-
tions for w, are hyperbolic equations with nonconstant coeffi-
cients and are usually called transport equations since they
account for transport of energy.

The transport equations can be written in conservative and
nonconservative form. The conservative form is simpler and
is more suitable for numerical methods. The equation for the
evolution of w; in conservative form is

v
W, = V-(cwoﬁi%), G1)

where w, = @ulc’. For a time harmonic solution ¢, = 1 and
wy = vi/c?. The above equation is interpreted as conservation
of energy in a tube of light rays. By a tube of rays we mean
an area bounded by the characteristic lines of the eikonal equa-
tion. Note that the characteristic lines for the eikonal equation
and the transport equations are identical, This fact leads to
the conclusion that the boundary conditions for the hyperbolic
system and the eikonal equation have to be specified at the
same part of the boundary. Note that when we have a branch
surface we used continuity of the phase to decide the boundary
conditions at the branch surface. Also the boundary conditions
for v, can be calculated by substituting the asymptotic expansion
in the boundary conditions of the original problem. For branch
surfaces due to corners or singularities in the index of refraction
or caustics, the form of the asymptotic is different, but the
general principle applies; see [9, 11].
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5. NUMERICAL ALGORITHM

Our numerical algorithm is developed based on the recently
devised numerical methods for Hamilton—Jacobi type equations
and upwind methods for hyperbolic equations. We developed
nurnerical algorithms to solve the equations both in conservative
and nonconservative variables. Here we report only on the
numerical algorithm developed for the conservative variables.
From a numerical and also theoretical point of view it seems
to be natural way of writing the equations. We consider only
the first three equations of the infinite system for ¢, wy, and w,,

¢ = [V (32)
w,=V- (cwg [g—i) (33)
w,=V- (cw, Ig_i) + U,(Avo - %) (34)

Ww=cVwldh, vi=cVw/id. (35)

We use third-order ENO interpolation and a Godunov type
flux to solve the eikonal equation and first-order upwind finite
difference methods to solve the transport part [14]. We could
also have used high order accurate ENO methods for conserva-
tion laws to solve the transport equations (see, e.g., the refer-
ences in [14].) We use Ax, Ay, and Af to denote the mesh size.
¢!, is the numerical approximation to the viscosity solution of
the eikonal equation,

&5 = blxi, 3, 1) = i Ax, j Ay, n Ai). (36)
Also we use standard notation for forward, backward, and
centered differences:

2N ¢U=W, Df‘#ﬁ%,
(37
DY o, = %}:f’—”

A Godunov type flux with ENO interpolation is used to solve

the eikonal equation:

ntl —
y oo qyi'.i B (38)
+ AfG(D:F’NO d)ijs D;ENO ¢ij, D:_-ENO qujs D;ENO C,f)u)
The values of the derivatives, D, are calculated based on
third-order interpotation with an adaptive stencil [14]. The nu-
merical flux is calculated based on the exact solution of a
Riemann problem for the eikonal equation. The flux is denoted
by G and is defined by

T S
G(u 4 U, 0 ) - eXtuEI(uf.f) eXtuEI(uif) H(H, U),

(39)
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where H(u, v) = ¢Vid +v? and Ka, b) = [minfa, b),
max(q, »}]. The function ext is defined by

EXbuciwpy = MaXuepey la=h,

(40)

XLy = MiNeyey if b <a. “n

Note that in general the operations of taking max and min do
not commutie and the Godunov flux is not always uniquely
defined. But for many cases, including our H(u, v), the flux is
uniquely defined. Use of a third-order ENO interpolation and
the exact Riemann solver results in the excellent resolution of
the discontinuities in the solution of the phase.

For solving the transport equations a first order upwind
scheme is used. In principle various sophisticated schemes de-
veloped for nonlinear conservation laws could be used to solve
the transport equations. For a qualitative understanding of the
solutions and showing the applicability of the approach a first-
order upwind method is sufficient, The velocity vector field
V/|V| was calculated using centered differences,

Vo _ Ve
=% 43
Vol (Ve @)

Once the velocity field is calculated a conservative scheme is

used to calculate wi'',

Ar A
witl=wi+ E (fxi+1.'2.j —fxf—lfl,j)
44
+ 2 Prgon = i -
Ay )ilj+1,’2 ij—-12ts

where fx and fv are the numerical fluxes calculated based
on a first-order upwind method. f we define (A, ) =
(V! |Vl + Vd/|[V|. )72, then the flux function in the x
direction, f‘x, is defined as

fol;‘lj = ci+l.jw0.£+1.jﬁx ifh, >0 (45)
fx."HfZ,j = € o, it iff, << 0. (46)

A similar definition is used for calculating the flux function
fv. For solving w, we used the same algorithm as above for
calculating the divergence term. To calculate the forcing term,
Av, — v,/ first vy and v, have to be calculated. v, and v,
were calculated using the numerical Hamiltonian G which is
equivalent to the numerical ¢,,

Vij = € Vwl Gy

i

(47)
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The term wvg, was calculated using a centered discretization
in time:

n+i

-
Uog — 2U6J; + vy

2 AP

(48)

N —_—
UVoy =

Note that the previous values of w; have to be stored in order
to calculate the time derivative of v,.

6. OTHER METHODS FOR EIKONAL EQUATION

The eikonal equation can be solved using ray tracing method
which in this context is the method of characteristics for solving
nonlinear PDEs. To solve the steady state eikonal equation
written in the form

Véi+ ¢ =nley), nlxy) =lcxy), (49
new independent variables (p, g) are defined as usual as

(p, 9) = (¢, ¢). A ray parameterized by s, (x(s), ¥(s), p(s),
q(5)), is defined as the solution to the following ODEs:

dx/ds = pIVp* + ¢
dv/ds = gIvVp' + ¢

dp/ds = n, (50)
dg/ds = n,
doids = n.

The rays could be found through a shooting method which is
equivalent to solving the above system of ODEs by specifying
a starting point, (x(0), y(0)), and a starting direction, (p(0), g(0)).
The rays could also be found through solving the following
equivalent system as a boundary value problem to find a ray
connecting two points:

dids(n dx/ds) = n,

d/ds(n dy/ds) = n,
dplds = n.

(51)

In practice many rays need to be calculated and computation-
ally it is not very efficient. If a(x, ¥) changes strongly, then
there are many rays connecting two points and in general there
is no guarantee to find the minimum ray. In fact a solution to
the eikonal equation obtained through ray tracing is a mixture
of different pieces of the multivalued solution. In general rays
automatically do not penetrate shadow regions and special pro-
cedures are devised to penetrate them.

Independent of our work finite difference methods have been
developed for solving the eikonal equation by Harabetian [4],
Vidale [i6, 17], and Van Trier and Symes [15]. Podvin and
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Lecomte have generated multivalued solutions of the eikonal
equation using ideas similar to ours [13]; also see [12]. Harabe-
tian uses a second-order upwind method to solve a similar
Hamilton—Jacobi equation [4]. He has apptlied his method to a
problem of reflection of a plane wave from a comer by solving
the eikonal equation (unpublished). His methods are closely
related to our discretization. The finite difference method of
Vidale is essentially based on the observation that the eikonal
equation can be reformulated as

Vo _
Vo g (52)

If we consider a fitted coordinate system (s, 7}, such that s is
in the direction of the gradient of the phase and Tis perpendicu-
lar to it; then the above equation is equivalent to

2,

53
s (53)
One can extend the value of ¢ in the direction of s using a
simple finite differencing of the form
(s + As) = @(s) + n(x(s), v(5)) As, (543
The methed of Vidale corresponds to writing the eikonal equa-
tion in the form
&= Vrixy) — $h (55)
In this method the data are on a cartesian grid and the directions
of ¢ and 7 do not correspond to the x or y coordinates. To
derive the finite differences s is chosen to be in the x, y, or
diagonal direction. This method relies on a not very accurate
step of deciding the direction of the front. This step could fail
especially when fronts are approaching each other. There is
also possibility of the term inside the square root becoming
negative. All the above considerations could lead into numeri-
cal instabilities.
The method of Symes and Van Trier corresponds to writing
the eikonal equation in polar coordinates,

& + it =, (56)

and using the r coordinate as the direction of propagation,

& =Nnt— ¢ilrt. (37)

The above nonlinear equation is then reduced to a conservation
law for the variable u = ¢b,,

u, = (Va — ). (58)
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the nonlinear conservation law is solved using a first-order
Engquist—Osher method. This method is closer to our method,
but still suffers from choosing a coordinate system fitted to the
front and all the problems associated with it.

7. NUMERICAL EXAMPLES

In this section we discuss several examples computed using
the above algorithm. All the examples are done using time
marching and the solution is stopped at a specific time. There
are no transients in the time dependent marching. The steady
state solution essentially propagates from the boundary to the
inside of the domain. The time necessary to calculate the solu-
tion is the time for the solution to reach the farthest point from
the boundary data.

We consider reflection of an incident wave off a cylinder.
We consider a cylinder of radius one at the origin. The source
of the wave is at point (3.5, (). We use polar coordinates and
the eikonal equation in (r, 6} space is written as

¢ =V + $ir. (59)

We denote the incident wave by ¢, and the reflected wave by
¢,. The physical problem is posed in the entire R* but our
computational domain is [1, 6] X | —m, ). The boundary condi-
tions for ¢, are specified as the following. We specify a time
harmonic source at point (3.5, 0), which is translated into the
boundary condition for the phase,

$(3.5,0) = tH(1). (60)
The boundary conditions are based on the local direction of
the characteristics. If the characteristic line is pointed to the
outside of the domain, there is no need for boundary conditions.
But if the characteristic line is directed to the inside, we use
& = 0. The direction of the characteristic line is simply deter-
mined based on the sign of the normal derivative of the phase.
In (r, 6) coordinates, the normal derivatives are simply d¢p/dé
and d/dr. The boundary conditions for the reflected wave,
¢,, are specified as the following, For r = 6, 8 = 7, and 6 =
—7 the boundary conditions are based on the local direction
of the characteristic line. The phase of the reflected wave at
the surface of the cylinder is equal to the incident wave and
therefore at r = 1 we specify the boundary condition for ¢,
according to

$:(1, 0) = (1, 0). (61)
The problem is solved numerically in (r, £} space and the results
are interpolated to a Cartesian grid. A contour plot of the
calculated phase of the incident wave is shown in Fig. 4. One
can see that in the incident wave we calculate the phase even
in the shadow region behind the cylinder. In the shadow region
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FIG. 4. Contour plot of the phase of the incident wave,

the solution is composed of two expansion waves starting at
the shadow line. The expansion waves correspond to the grazing
waves as described by Keller [5]. A contour plot of the phase
of the reflected wave is shown in the next figure. The reflected
wave also creates two expansion waves.

In a nonuniform media the solution of the eikonal equation
could develop singularities. These singularities are generated
when two wave fronts approach each other. The viscosity solu-
tion of the eikonal equation represents only one sheet of the
solution and the hidden solutions are ignored. The branch sur-
face of the solution is nothing but the surface of the discontinuity
in the gradient of the phase. We consider the eikonal equation
in the plane [~1, 1] X [—1, 1]. We denote by ¢, the original
solution and ¢, as the hidden solution. Two time harmonic
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FIG. 5. Contour plot of the phase of the reflected wave.
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FIG. 6.

Interacting waves.

sources are considered which are implemented by the following
boundary conditions,

d(—0.5,0) = (t — 0.25)H(t — 0.25),
(0.5, 0) = tH(1).

(62)

The solution of the initial-boundary value problem is unique
up to time ¢ = 0.625. After that the solution is double valued.
The second solution is connected through a branch curve on
the shock. The position of the shock is simply the curve defined
by 3y* + 1/2y — x* — 15/64 = 0. We employ a general shock
detection algorithm to detect the position of the branch curve.
Once the position is found we use the values of ¢, as boundary
condition for ¢. The position of the shock is detected based
on the local sign of the derivative of the phase. At each point,
¢y, there are three directions to be checked, x, y, and x — ¥
direction. The local forward and backward differences of ¢;
are calculated in each direction. A shock is detected if in any
of the three directions the forward difference is positive and
the backward difference is negative. The points ¢, that are
detected as a shock are used as boundary points for ¢,
by = ¢,_u-
This procedure enables us to calculate the hidden solution.
In the next example we compute the solution of the eikonal
equation for the shadow of a corner as illuminated by a plane

FIG. 7. Recovered waves.



ASYMPTOTIC EXPANSION FOR THE SCALAR WAVE

FIG. 8. FPhase of a plane wave approaching a comner, first sheet.

wave. In (x, y) space we consider the square [—1, 11 X
[—1, 1], excluding the fourth quadrant. The boundary condi-
tions are specified at y = —1,
dix, — 1,8y =tH(t) forx < 63)
For the remaining sides of the square and the sides of the
obstacle we specify the boundary conditions based on the direc-
tion of the characteristic lines as was described before. The
explicit solution in the second and third quadrants simply is a
plane wave traveling in the y direction,
Plx,y, 1) = (t —y — DH(). (64)
In the first quadrant it is a cylindrical wave originating from
the comer of the obstacle,
Hx, v, H=0¢—1—-VI+yYIHr—1). (65)
The contour plot of the calculated phase is shown in Fig. 8.
The complete solution of the above problem is double-valued.
The second branch is a cylindrical wave originating from the
corner, shown in Fig. 9.
In the next experiment we consider the eikonal equation in
a non-homogeneous medium. We compute distortion of a plane
wave as it goes through a concave lens and then a convex lens.
Qur computational domain in (x, y) space is again the square
[—1, 1] X [, 1]. A convex lens is defined by defining the
speed of the wave, c(x, y), as

cxy)=1 ifd>1
clx, vy = 112 4+ 112142 - 1{2 cos(md))

(66)
ifd<1; (67)

d is defined as d = (x/0.8)* + (¥/0.3)*. Note that c(x, y) is
smooth up to the first derivative. We define a concave lens by
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FIG. 9. Phase of a plane wave approaching a corner, second sheet.

defining ¢(x, y) to be

cx,y)=1 ifD>1 (68)

clx, )= 1/2+ 1/2(1/2 — 1/2 cos(mx/s(y))) ifD <. (69)

D is defined as D = —(x/0.8? + (¥/0.3¥ and s(y) =
0.3V 1 + (¥/0.3)*. For boundary conditions we specify the
phase at the side y = —1,

dx, —1,1) = tH{1). (70)

The contour plot of the phase as it goes through the concave
lens is shown in Fig. 10. As expected the plane wave bends
outward. The first term in the expansion of the amplitude, v,,
is calculated and is shown in Fig. 11. The amplitude is calculated

FIG. 10. Contour plot of the phase for a concave lens.
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FIG. 11.

Amplitude, v,, for a concave lens.

with the numerical algorithm for the conservative variables and
then is transformed to obtain vg.

The contour plot of the phase for the convex lens is shown
in Fig. 12. The convex lens bends the plane wave towards the
v axis and the phase becomes non-unique there, Our numerical
solution shows the viscosity solution of ¢ and a shock is formed
on the y axis starting at the focal peint. The amplitude of the
wave, Ug, is shown in Fig. 13. The calculated v, is smooth and
valid up to the focal point only, and it is not valid after the
focal point. We are in principle able to calculate the hidden
solution using the special algorithm that was described before.

8. CONCLUSION

A general procedure is developed 1o solve the partial differen-
tial equations defining the coefficients of the classical high
frequency asymptotic expansion of the scalar wave equation.

N

FIG. 12. Contour plot of the phase for a convex lens.

FATEMI, ENGQUIST, AND OSHER

FIG. 13. Amplitude, v, for a convex lens.

High order Godunov-ENO schemes are used to solve the eiko-
nal equation for the phase of the solution. The expansion coef-
ficients for the amplitude of the solution are recast in conserva-
tive variables and upwind finite difference methods are
developed to sclve the resulting hyperbolic equations. The algo-
rithm can accurately represent the discontinuities in the coeffi-
cient.

A new numerical procedure is devised to calculate multival-
ued solutions of the eikonal equation that are not known a
priori to be multivalued. The procedure relies on the realization
that a shock type discontinuity in the gradient of the phase is
a branch surface and using the continuity of the phase across
the branch surface to define the boundary conditions for the
hidden solution, A multivalued phase has a multivalued expan-
sion for the amplitude coefficients as well. The necessary condi-
tions for connecting the multivalued expansions of the ampli-
tude across the branch surfaces can be obtained from the
boundary conditions for the solution of the Helmholtz equation.
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